Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets"
نویسندگان
چکیده
In a recently published paper in JMLR, Tsang et al. (2005) present an algorithm for SVM called Core Vector Machines (CVM) and illustrate its performances through comparisons with other SVM solvers. After reading the CVM paper we were surprised by some of the reported results. In order to clarify the matter, we decided to reproduce some of the experiments. It turns out that to some extent, our results contradict those reported. Reasons of these different behaviors are given through the analysis of the stopping criterion.
منابع مشابه
Authors’ Reply to the “Comments on the Core Vector Machines: Fast SVM Training on Very Large Data Sets”
In this reply, we report results on using the Windows binary of the CVM on the checkers and other real-world data sets. Experimental results show that the CVM is much more stable than is reported in (Loosli and Canu, 2007). Moreover, the analysis of CVM’s stopping criterion in (Loosli and Canu, 2007) is based on some connections between the traditional ν-SVM and C-SVM using the 1-norm error. Ho...
متن کاملCore Vector Machines: Fast SVM Training on Very Large Data Sets
Standard SVM training has O(m3) time and O(m2) space complexities, where m is the training set size. It is thus computationally infeasible on very large data sets. By observing that practical SVM implementations only approximate the optimal solution by an iterative strategy, we scale up kernel methods by exploiting such “approximateness” in this paper. We first show that many kernel methods can...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملSequential minimal optimization: A fast Algorithm for Training Support Vector machines
This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possible QP problems. These small QP problems are solved analytically, which avoids using a time-consu...
متن کاملEfficient Large Scale Linear Programming Support Vector Machines
This paper presents a decomposition method for efficiently constructing 1-norm Support Vector Machines (SVMs). The decomposition algorithm introduced in this paper possesses many desirable properties. For example, it is provably convergent, scales well to large datasets, is easy to implement, and can be extended to handle support vector regression and other SVM variants. We demonstrate the effi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007